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Abstract

In this paper, a solution to the problem of heat conduction in a rectangular plate subjected to the activity of a moving heat source is
presented. The temperature of the plate changes because a limited area on the plate surface is heated by a heat source. The heat source
moves along an elliptical trajectory which always remains within the plate area. An exact solution to the problem in an analytical form is
obtained by applying the Green’s function method. Exemplary results of numerical calculations to determine the temperature distribu-

tion in the plate are presented.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Mathematical models of heat conduction with moving
heat sources have practical applications in numerous man-
ufacturing processes such as welding, metal cutting, and
the grinding and drilling of metals. The problem is the sub-
ject of many publications (for instance, Refs. [1-6]), and
authors often use analytical methods to solve these types
of problems. The application of analytical models of heat
conduction is limited in regular domains, but their use is
more profitable in the analysis of the process.

An analytical solution to the problem of the three-
dimensional temperature distribution generating by a mov-
ing laser beam source in a finite domain was presented by
Araya and Gutierrez [1]. The heat source is modeled as a
laser beam with a Gaussian distribution or as a spatially
uniform plane. The results and discussion concern the
boundary effects on the temperature of a workpiece. An
analytical model which describes a three-dimensional tem-
perature fields in a finite thickness plate was investigated by
Cheng and Lin [2]. The considered plate was heated by a
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moving heat source with a Gaussian distribution. It was
assumed that the heat source moved with a constant veloc-
ity along a line which was parallel to one edge of the rect-
angular plate. A circular Gaussian heat source moving at a
constant relative velocity over the surface of a solid with a
finite depth and width was also assumed by Manca et al.
[3]. An analytical form of the solution to the three-dimen-
sional problem was derived using a Green’s function
method (GFM). The Green’s function describes the tem-
perature distribution caused by an instantaneous, local
energy pulse. The specific use of the GFM in solving vari-
ous heat conduction problems was widely discussed by
Beck et al. [4]. Examples of applications of the GFM in
solving heat conduction problems in beams and a plate
with moving heat sources are presented by Kidawa-Kukla
[5-7]. In Refs. [5,6] analytical solutions to the temperature
distribution in rectangular beams heated by a moving heat
source which moves harmonically around a fixed point on
the beam surface are presented. These solutions were then
used to determine the displacement of the beam induced by
cyclic changes in the temperature. A parabolic equation [5]
or a hyperbolic equation [6] of the heat conduction was
assumed in the mathematical model. The temperature dis-
tribution in a rectangular plate subjected to the activity of a
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Nomenclature

T(x,y,z,t) temperature of a plate (°C)

g(x,y,t) volumetric energy of heat source (W m )

X(¢),y(¢) functions describing the movement of the heat
source (m)

Ty, T, temperatures of a surrounding medium (°C)

a,b,h dimensions of a plate (m)

t time (s)

X0,y  coordinates of fixed point of a plate (m)

G(x,y,z,t,&,n,¢,7) Green’s function

Greek symbols
K thermal diffusivity (m?s~")
(2] heat flux of source (W m~?)

& size of the quadratic element on the plate surface
heated by the heat source (m)

o() Dirac delta function

heat transfer coefficients (W m~! K1)

o, 01

A thermal conductivity (W m~' K™')

10 angular velocity of the moving heat source
(rad s 1)

Subscripts

i, j, k, I, m, n indices

heat source is presented in Ref. [7]. It was assumed that the
heat source moves harmonically around a fixed point along
a segment which always remains on the plate.

The analytical form of the solution to the non-homoge-
neous heat conduction problem usually involves an infinite
series which is characterized by slow convergence. For
example, low convergence can be observed in the steady
state part of solutions to the partial heating of solids.
The verification of solution methods to the heat transfer
problem for the partial heating of a rectangular solid is
the subject of the paper by Beck et al. [8]. In order to
improve the convergence of the solution, the authors of
papers [4,8] recommend the use of the GFM in conjunction
with a time-partition method. In this approach the large
and the small-time forms of the Green’s functions are
applied.

The first step in solving a linear heat transfer problem
using GFM consists in to derive the Green’s function. An
auxiliary initial-boundary problem should be solved to
determine the function. The solution to this problem can
be obtained, for example, by using a method for the sepa-
ration of variables, the Laplace transform or a method
using images [4]. Alternative representations of Green’s
functions for two-dimensional heat conduction problems
are presented by Melnikov [9], where the functions were
obtained by means of a combination of the Laplace trans-
form, the eigenfunction expansion method and the varia-
tion of parameters method. A set of Green’s functions,
useful in solving various heat conduction problems, is
given in Ref. [4]. The form of the Green’s function is of
great significance because the above mentioned slow con-
vergence of the solution can effect the accuracy of numeri-
cal calculations.

This paper presents an analytical solution to the heat
conduction problem in a plate which is subjected to a mov-
ing heat source. The temperature of the plate changes
because a limited area on the plate surface is heated by a
heat source which moves along an elliptical trajectory.
The temperature field in the rectangular plate is obtained

as a solution to a three-dimensional heat conduction prob-
lem solved using the Green’s function method.

2. Problem formulation

Consider a rectangular plate of uniform thickness / with
edge lengths a and b, as shown in Fig. 1. The temperature
T(x,y,z,t) of the plate satisfies the differential equation of
heat conduction:

10T
2
T__2°
Vs K Ot

where V2 = (02/ax?) + (8%/)?) + (9%/02%), « is thermal
diffusivity, 4 is thermal conductivity and g(x, y,¢) denotes
a volumetric energy generation. In this study, it is assumed
that the thermal energy is provided by a heat source which

moves along a trajectory on the plate surface. Therefore,
the function g(x, y,z,¢) takes the form

2oz =%
for x(f) —e <x <X(t)+¢ y(t) —e <y <y(t)+e¢
0 otherwise

F1glen) =0 (n

gx,y,t) =

2)

where @ characterises the stream of heat, 2¢ is the size of
the quadratic element on the plate surface heated by the

Laser beam

>y

b

h ¥

Fig. 1. Scheme of the considered plate.
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heat source and J() is the Dirac delta function. The func-
tions x(¢),y(¢), which describe the elliptical trajectory of
the heat source are:

X(t) = xo + Acospt, 3(t) =y, + Bsin ot (3)

where xg, yo, 4, B are constants and ¢ is the angular veloc-
ity of the moving heat source. So that the heat source al-
ways remains within the plate area, it is assumed that the
constants occurring in Eq. (3) satisfy the following inequal-
ities: A+e<xy<a—A—eB+e<y,<b-—B-—c.

The differential equation (1) is complemented by the fol-
lowing initial and boundary conditions:

T(x,y,2z,0) =0 (4)
7(0,y,z,t) =T(a,y,z,t) =0, T(x,0,z,t)=T(x,b,z,t) =0
(5)
20T (x,y,h,t) )0z =0y [Ty — T(x,y,h,t)] (6)
20T (x,,0,8)0z = —oip[ Ty — T(x,,0,7)] (7)

where o and «; are the heat transfer coefficients, and T, T
are known temperatures of the surrounding medium.

3. Solution to the problem

The solution to the initial-boundary problem, which is
given by Eq. (1) and conditions (4)—(7), is determined by
using Green’s function method. The Green’s function
G(x,y,z,t,&n,¢,7) is a solution to the differential equation:

10
2 [ — C
<V3 Kat>G(xayvz7t7 67”757‘[)

=—06(x = &)é(y =)oz — &)é(r — 1) (8)
and satisfies the homogeneous initial-boundary conditions,
analogous to the initial and boundary conditions (4)—(7):
G|t:0 = 07 G|x:0 = G‘x:a = 07 G|y:0 = 07 G‘y:b = 07 (9)
(A0G/0z — 9G)|,_, =0, (A0G/0z + o1 G)|,_, = 0, (10)
The Green’s function for the considered heat conduction
problem as a solution to the homogeneous differential

problem (8)—(10) is presented in Appendix A. The applica-
tion of a reciprocity relation [4]: G(x,y,z,t,¢n,( 1) =

G(&n, L —1,x,y,2,—t), in Eq. (8), yields

—, 12
<V§ + E a_f) G(x7y727 tv éa n, C7 T)

= —d(x =)oy —n)o(z — &)é(t — 1) (11)
where V2 = (8%/0&%) 4 (8% /on?) + (97 /3(%). Eq. (11) is then

used to solve the problem.

The Green’s function is applied to determine the temper-
ature 7 in the plate. To this end the following steps should
be performed:

— Replacement of variables x, y, z, t in Eq. (1) by &, 1, {, =,
respectively.

— Multiplication of both sides of the equation obtained in
the first step, by the Green’s function G(x,y,z,t,¢,

1,6,7).

— Integration of both sides of the equation obtained in the
second step, with respect to &, i, {, t in the intervals (0,
a), (0, b), (0, &), (0, t), respectively.

As a result one obtains

////KVZ_la—T) (fy'hcvf)Jr%g(émg,r)

x G(x,y,z,¢,&,n,(,7)d{drdndE =0 (12)

Next, the integral in Eq. (12) is integrated by parts: the
terms which include derivatives of the function 7 with re-
spect to &, i, {, are integrated by parts twice and the term
including the derivative with respect to 7 is integrated once.
After utilizing the initial and boundary conditions (4)—(7)
and (9),(10), the following equation is obtained:

FL LT g)emasnce)

< T(Emc0) 41 g(En L) (x,y7z7t,é,n,C,r)}
x dtd{dnd{+ B.c. =0 (13)

where

a b t
B.c. = / / / (1, T1Gl oy, + 1o TGl ] drdndé
o Jo Jo
Finally, using (11) in Eq. (13) and using the properties of
the Dirac delta function, one obtains:

T(x,y,z,t)

;//b// (En,(,1)G(x,,2,t,E 1, 1)

x dtd{dndé + B.c. (14)

Substituting the function g(¢&,#,{, 1) given by (2) into Eq.
(14), the temperature of the plate, T'(x,y,z,?), is expressed
as

X(1)+e y(1)—¢
T(x,y,z,1) / / G(
482/{ (1)—¢ y(1)—e

+ B.c. (15)

X, ¥z, t7 £7n7h7f)d7[dédf

The Green’s function G(x,y,z,t, & n,{, ) given by (A.1) is
now utilized in Eq. (15). After evaluation of the integrals
with respect to #, & one obtains the temperature
T(x,y,z,t) in the form

4k N o= — w,

=y DD DD Dl ]mQ

j=1 m=1 n=1

T(x,y,z,t) =

,m,,(t)

. JXT . & .
x sinZ" sin 2" sm]l sin"—~ 4 B.c (16)
a a b

where ,(z), O, are defined in Appendix A; and

t - —
K (1) :/o Sinjm;(T) sin mn)b/(r) exp(—K73,,, (f —
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First, the function X ;,,,(¢) is writ-

the integrand in the form of an infinite series, and integrate
term by term”.
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JTIX

Xy MTY
+ cos cos—=2
a

t

/ sin(u; cos @) sin(v,, sin 1)
0

X exp(—;cyjz.mn(t —1))dr

where y; = and v,

(18)

=28 The integrals occurring in Eq.
(18) were evaluated and the results are presented in Appen-
dix B.
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4. Numerical examples

The solution to the considered three-dimensional heat
conduction problem is used in the numerical investigation
of the temperature distribution in a rectangular steel plate
which is heated by a moving heat source. For each calcula-
tion, dimensional and physical properties of the plate and
the heat source are: A=514Wm 'K! x=129x
10°m?s™!, p=02nrads™", ag=a; =100 Wm 'K,
xo=a/2, y,=b/2 and © =10° W m °. The temperature
of the surrounding medium is assumed as 7=
Ty =100 °C. The calculations were performed with use
the Mathematica software.

In the first example, it was assumed that the heat source
moves harmonically along a section parallel to one edge of
the plate (it was assumed B = 0 in Eq. (3)). In this case, the
calculations were performed for a plate with: a = 0.5 m,
b=04m, 2 =0.02m and 4 = 0.2 m. The temperature dis-
tribution on the plate surface z = A4, for time ¢ = 3600—
3610 s, is shown in Fig. 2. The time interval between obser-
vations of the temperature of the plate is set at 10 s because
this is the time the heat source takes to execute a complete
cycle of movement. A relative long time overall observation
time (3600-3610 s) was selected in order that the process
can be treated practically as in a steady state during this
time. The location of the heat source is clearly visible in
the figure and is shown by the temperature peak. The tem-
perature is lower in front of heat source than behind the
location of the heat source.

The temperature distribution on the plate surface when
the heat source moves along an elliptical trajectory is illus-
trated in Fig. 3. The geometrical dimensions of the consid-
ered plate are: a=1.0m, b=0.5m, 2#=0.01m. The
elliptical trajectory of the movement of the heat source is
characterized by Eq. (3) with 4 =0.3m and B=0.2m.
The temperature distribution on the plate surface is pre-
sented for 1 = 3600 s, when the heat source is located at
the vertex of the ellipse. The temperature increases dramat-
ically around the point of the plate at the moment of heat
source transition, and the temperature changes over a low
range only in the area of the middle of the ellipse.

In the third example, the temperature distribution on a
square plate heated by a source which moves along a circu-
lar trajectory was determined. The centre of the circle coin-
cides with the middle of the square. The following data
were assumed for the calculations: ¢ =1.0m, b= 1.0m,
h=0.01m, 4 =B =0.25m. The temperature distribution
on the plate surface z = A, for t = 3600 s as a function of
two variables Xx, y, is presented in Fig. 4(a), and the isother-
mal lines are shown in Fig. 4(b). Isotherms behind the heat
source are much thicker than in the front and the position
of the moving heat source can be clearly seen (Fig. 4(b)).

5. Conclusions

In this paper, an analytical model to describe the three-
dimensional temperature field for a finite plate with a heat

source which moves over its surface was established. The
moving heat source causes cyclic heating of various plate
areas. The temperature distribution in the considered plate
in an analytical form was obtained using the time-depen-
dent Green’s function. The advantage of this approach is
that a solution without any additional simplification can
be obtained. Numerical calculation of the temperature dis-
tribution were performed using the analytical form of the
solution. The changes in temperature on the plate surface
are shown for a steel plate subjected to the activity of a
moving heat source. The results are presented for the heat
source moving along a section parallel to one edge of the
plate, moving along an elliptical trajectory, and moving
in a circular trajectory. The temperature is highest at the
point of heat source location, but the temperature
decreases behind the source. In the data assumed for the
numerical calculations, in particular for the assumed veloc-
ity of the heat source, the temperature field of the plate
area changes insignificantly over time apart from in a lim-
ited area around the heat source. Moreover, the tempera-
ture is considerably lower in the area around the centre
of the circular or elliptical trajectory than near the
trajectory.

Appendix A

The Green’s function G(x,y,z,t,¢&,n,¢,17) of the three-
dimensional heat conduction problem ((10) and (11)) can
be expressed in a form of the product [6]

G(x,y,2,t,&1,6,7)
4
= EH(t —17)Gx(x, &t —1)Gy(y,n,t — 1)Gz(2,{,t — 1)
(A1)

where H(t — ) is the Heaviside function, Gy(x, &t — 1),

Gy(y,n,t — 1) and Ggz(z,{,7 —t) are Green’s functions of

one-dimensional problems: in x-direction, y-direction and

z-direction. The formulations of the considered one-dimen-

sional initial- boundary problems are as follows:
x-direction:

Gt = a-0-n) (A
axz Ot x (X, ¢, T) = X T .
Gxly =0,Gx|,_y = Gx|,_, =0 (A.3)

y-direction:

G puna— = a1 (A
6)/2 ot Y\, 1, T) = y—n T .
GY|[:0 = Oa GY|y:0 = GY|y:b =0 (AS)

z-direction:
o 19 i
<§ - E a) GZ(Zv £7t - T) = —b(Z - C)é(t - T) (A6)
Gzli—g = 0, (40G2/0z — 09 Gz)|,o = 0, (208G, /0z + 11 Gz)|._;, = 0,
(A7)
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The Green’s functions Gy(x, &,¢t — 1), Gy(y,n,t — 1) and
Gz(z,¢{,7 —t), are given by Beck et al. in Ref. [4]. The func-
tions can be written in the form

N2
Jjm jrx . jné
Gy(x, &t —1) = Zexp (a> (t—r ))sm7sm7
(A.8)
2\ ™2 Jmy .
Gy(y,n,t — 1) Ez:: < ( ) (t— )) s1n7 smT
(A.9)
2 1
GZ(Za gvt_ T) = Z Z 5 CXp(—Kﬁi(f - T))[//n(z)l/ln(g)
n=lI n
(A.10)
where () = B,cos 2+t sin B,z O, = (B2 + 1)
(l % sin’ ﬁ,,h), for n=1,2,..., and B, are roots

of the equation:

ﬁn(ﬂo + :ul) Cos ﬁnh - (ﬁi (All)

— Hopy) sin B,h =0

Appendix B

An analytic form of the integrals in equation (18) can be
obtained by using the following relationships [10]:

cos(rsinu) =2 Z 1:J2(r) cos 2iu (B.1)
i=0

sin(rsinu) = 2ZJ2,-+1(I’) sin(2i + 1)u (B.2)
=0

and the relationships which can be obtain from (B.1, B.2):
cos(rcosu) = 22 (B.3)

sin(rcosu) =2 E

where J,(r) are Bessel functions and y, = 0.5, y;, =1 for
i=1,2,.... From Egs. (B.1)(B.4) one obtains
cos(u; cos @t) cos(v,, sin ¢t)

—422

/,Jz, ) cos 2iu

1)1 (r) cos((2i + 1)u) (B.4)

x,yka, (1) 24 (vin) cOS 2ipt cos 2kpt

(B.5)
cos(u; cos ¢t) sin(v,, sin ¢t)
=4 Z Aljzz 1) 2x41 (Vi) €08 2ipt sin(2k + 1) gt
i=0 k=
(B.6)
sin(y; cos @r) cos(v,, sin ¢t)
=4 Z(_l)iXkJZiJrl(.uj)JZk(Vm) cos(2i + 1)t cos 2kt
=0 k=0
(B.7)
sin(y; cos @) sin(v,, sin @)
=4 Z J21+1 W J2k+l(Vm) COS(ZZ + 1)([)1 sm(2k + 1)(/)l

i=0 k=0

(B.8)

Hence the function K ;,,(¢) in Eq. (18) may be then written
as

00 00 ] mmy, )
K,-mn(t):4z Z( 1y {sm . sin 5 )(l-kaz,-(,uj)J%( )]m,l(t 2i,2k)

. JTXo ”171)/0
—— co
b

iTX) . MT
+ cos]— sin Yo
a b

/f,JZL(Il/)J7k+1(\7,,,) /m”(t 20,2k + 1)

T 21 () 26 (v )jmn(t 2i+1,2k)

]nx

*‘FCOST COS J2,+1(,uj).]21‘+1( )/m,,(t 21+1 2k + 1)}

(B.9)

b

where

t
(1) 2
Ly (t57,5) = /0 cos(ret) cos(set) exp(—;cyjmn(t —1))drt

(B.10)

t
©) :
L (tr,s) = /0 cos(ret) sin(ser) exp(—xyfmn(t —1))dr
(B.11)

After evaluation the integrals (B.10), (B.11) are:

1

IV (7 5) =
(r.s) Com (s

jmn

_[2_ 2 4 2 2 AV)
o XD )7 K (7 7))

+ m [yfmnx cos[(r — $)tg] + (r — s)@ sin[(r — s)t¢]
+ m [yjz.mnk cos[(r + $)t@] + (r + s)@ sin[(r + s)t¢]
(B.12)

1
19 (tr,s) =
]nm( v, Y) ijn (i’ _ S)ij,,(}’ T

+ m [(r — )@ cos|(r — s)tp] — "/fm”;c sin[(r — s)t¢]
1
* 2Cun(r +9)

)exp( k)5 (i + (=1 4 57) %)

[ (r + s)p cos[(r + s)tp] + 2 K sin[(r + s)t¢)]

jmn

(B.13)

with C,, (1) =94 K> + u?p?.
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