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Abstract

In this paper, a solution to the problem of heat conduction in a rectangular plate subjected to the activity of a moving heat source is
presented. The temperature of the plate changes because a limited area on the plate surface is heated by a heat source. The heat source
moves along an elliptical trajectory which always remains within the plate area. An exact solution to the problem in an analytical form is
obtained by applying the Green’s function method. Exemplary results of numerical calculations to determine the temperature distribu-
tion in the plate are presented.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Mathematical models of heat conduction with moving
heat sources have practical applications in numerous man-
ufacturing processes such as welding, metal cutting, and
the grinding and drilling of metals. The problem is the sub-
ject of many publications (for instance, Refs. [1–6]), and
authors often use analytical methods to solve these types
of problems. The application of analytical models of heat
conduction is limited in regular domains, but their use is
more profitable in the analysis of the process.

An analytical solution to the problem of the three-
dimensional temperature distribution generating by a mov-
ing laser beam source in a finite domain was presented by
Araya and Gutierrez [1]. The heat source is modeled as a
laser beam with a Gaussian distribution or as a spatially
uniform plane. The results and discussion concern the
boundary effects on the temperature of a workpiece. An
analytical model which describes a three-dimensional tem-
perature fields in a finite thickness plate was investigated by
Cheng and Lin [2]. The considered plate was heated by a
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moving heat source with a Gaussian distribution. It was
assumed that the heat source moved with a constant veloc-
ity along a line which was parallel to one edge of the rect-
angular plate. A circular Gaussian heat source moving at a
constant relative velocity over the surface of a solid with a
finite depth and width was also assumed by Manca et al.
[3]. An analytical form of the solution to the three-dimen-
sional problem was derived using a Green’s function
method (GFM). The Green’s function describes the tem-
perature distribution caused by an instantaneous, local
energy pulse. The specific use of the GFM in solving vari-
ous heat conduction problems was widely discussed by
Beck et al. [4]. Examples of applications of the GFM in
solving heat conduction problems in beams and a plate
with moving heat sources are presented by Kidawa-Kukla
[5–7]. In Refs. [5,6] analytical solutions to the temperature
distribution in rectangular beams heated by a moving heat
source which moves harmonically around a fixed point on
the beam surface are presented. These solutions were then
used to determine the displacement of the beam induced by
cyclic changes in the temperature. A parabolic equation [5]
or a hyperbolic equation [6] of the heat conduction was
assumed in the mathematical model. The temperature dis-
tribution in a rectangular plate subjected to the activity of a
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Nomenclature

T ðx; y; z; tÞ temperature of a plate (�C)
gðx; y; tÞ volumetric energy of heat source (W m�3)
�xðtÞ; �yðtÞ functions describing the movement of the heat

source (m)
T 0; T 1 temperatures of a surrounding medium (�C)
a; b; h dimensions of a plate (m)
t time (s)
x0; y0 coordinates of fixed point of a plate (m)
Gðx; y; z; t; n; g; 1; sÞ Green’s function

Greek symbols

j thermal diffusivity (m2 s�1)
H heat flux of source (W m�2)

e size of the quadratic element on the plate surface
heated by the heat source (m)

d( ) Dirac delta function
a0; a1 heat transfer coefficients (W m�1 K�1)
k thermal conductivity (W m�1 K�1)
u angular velocity of the moving heat source

(rad s�1)

Subscripts

i, j, k, l, m, n indices

Laser beam

y

z

b

a

h

x

Fig. 1. Scheme of the considered plate.
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heat source is presented in Ref. [7]. It was assumed that the
heat source moves harmonically around a fixed point along
a segment which always remains on the plate.

The analytical form of the solution to the non-homoge-
neous heat conduction problem usually involves an infinite
series which is characterized by slow convergence. For
example, low convergence can be observed in the steady
state part of solutions to the partial heating of solids.
The verification of solution methods to the heat transfer
problem for the partial heating of a rectangular solid is
the subject of the paper by Beck et al. [8]. In order to
improve the convergence of the solution, the authors of
papers [4,8] recommend the use of the GFM in conjunction
with a time-partition method. In this approach the large
and the small-time forms of the Green’s functions are
applied.

The first step in solving a linear heat transfer problem
using GFM consists in to derive the Green’s function. An
auxiliary initial-boundary problem should be solved to
determine the function. The solution to this problem can
be obtained, for example, by using a method for the sepa-
ration of variables, the Laplace transform or a method
using images [4]. Alternative representations of Green’s
functions for two-dimensional heat conduction problems
are presented by Melnikov [9], where the functions were
obtained by means of a combination of the Laplace trans-
form, the eigenfunction expansion method and the varia-
tion of parameters method. A set of Green’s functions,
useful in solving various heat conduction problems, is
given in Ref. [4]. The form of the Green’s function is of
great significance because the above mentioned slow con-
vergence of the solution can effect the accuracy of numeri-
cal calculations.

This paper presents an analytical solution to the heat
conduction problem in a plate which is subjected to a mov-
ing heat source. The temperature of the plate changes
because a limited area on the plate surface is heated by a
heat source which moves along an elliptical trajectory.
The temperature field in the rectangular plate is obtained
as a solution to a three-dimensional heat conduction prob-
lem solved using the Green’s function method.

2. Problem formulation

Consider a rectangular plate of uniform thickness h with
edge lengths a and b, as shown in Fig. 1. The temperature
T ðx; y; z; tÞ of the plate satisfies the differential equation of
heat conduction:

r2
3T � 1

j
oT
ot
þ 1

k
gðx; y; tÞ ¼ 0 ð1Þ

where r2
3 � ðo

2=ox2Þ þ ðo2=oy2Þ þ ðo2=oz2Þ, j is thermal
diffusivity, k is thermal conductivity and gðx; y; tÞ denotes
a volumetric energy generation. In this study, it is assumed
that the thermal energy is provided by a heat source which
moves along a trajectory on the plate surface. Therefore,
the function gðx; y; z; tÞ takes the form

gðx; y; tÞ ¼

H
4e2 dðz� h

2
Þ

for �xðtÞ � e < x < �xðtÞ þ e; �yðtÞ � e < y < �yðtÞ þ e

0 otherwise

8><
>:

ð2Þ

where H characterises the stream of heat, 2e is the size of
the quadratic element on the plate surface heated by the
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heat source and d() is the Dirac delta function. The func-
tions �xðtÞ; �yðtÞ, which describe the elliptical trajectory of
the heat source are:

�xðtÞ ¼ x0 þ A cos ut; �yðtÞ ¼ y0 þ B sin ut ð3Þ
where x0, y0, A, B are constants and u is the angular veloc-
ity of the moving heat source. So that the heat source al-
ways remains within the plate area, it is assumed that the
constants occurring in Eq. (3) satisfy the following inequal-
ities: Aþ e < x0 < a� A� e, Bþ e < y0 < b� B� e.

The differential equation (1) is complemented by the fol-
lowing initial and boundary conditions:

T ðx; y; z;0Þ ¼ 0 ð4Þ
T ð0; y; z; tÞ ¼ T ða; y; z; tÞ ¼ 0; T ðx;0; z; tÞ ¼ T ðx;b; z; tÞ ¼ 0

ð5Þ
koT ðx; y;h; tÞ=oz¼ a1½T 1� T ðx; y;h; tÞ� ð6Þ
koT ðx; y;0; tÞoz¼�a0½T 0� T ðx; y;0; tÞ� ð7Þ
where a0 and a1 are the heat transfer coefficients, and T 0, T 1

are known temperatures of the surrounding medium.

3. Solution to the problem

The solution to the initial-boundary problem, which is
given by Eq. (1) and conditions (4)–(7), is determined by
using Green’s function method. The Green’s function
Gðx; y; z; t; n; g; 1; sÞ is a solution to the differential equation:

r2
3 �

1

j
o

ot

� �
Gðx; y; z; t; n; g; 1; sÞ

¼ �dðx� nÞdðy � gÞdðz� nÞdðt � sÞ ð8Þ
and satisfies the homogeneous initial-boundary conditions,
analogous to the initial and boundary conditions (4)–(7):

Gjt¼0 ¼ 0;Gjx¼0 ¼ Gjx¼a ¼ 0;Gjy¼0 ¼ 0;Gjy¼b ¼ 0; ð9Þ
ðkoG=oz� a0GÞjz¼0 ¼ 0; ðkoG=ozþ a1GÞjz¼h ¼ 0; ð10Þ
The Green’s function for the considered heat conduction
problem as a solution to the homogeneous differential
problem (8)–(10) is presented in Appendix A. The applica-
tion of a reciprocity relation [4]: Gðx; y; z; t; n; g; f; sÞ ¼
Gðn; g; f;�s; x; y; z;�tÞ, in Eq. (8), yields

r2
3 þ

1

j
oT
os

� �
Gðx; y; z; t; n; g; f; sÞ

¼ �dðx� nÞdðy � gÞdðz� nÞdðt � sÞ ð11Þ
wherer2

3 � ðo
2=on2Þ þ ðo2=og2Þ þ ðo2=of2Þ. Eq. (11) is then

used to solve the problem.
The Green’s function is applied to determine the temper-

ature T in the plate. To this end the following steps should
be performed:

– Replacement of variables x; y, z, t in Eq. (1) by n, g, f, s,
respectively.

– Multiplication of both sides of the equation obtained in
the first step, by the Green’s function Gðx; y; z; t; n;
g; 1; sÞ.
– Integration of both sides of the equation obtained in the
second step, with respect to n, g, f, s in the intervals (0,
aÞ, (0, bÞ, (0, hÞ, (0, tÞ, respectively.

As a result one obtainsZ a

0

Z b

0

Z h

0

Z t

0

r2
3 �

1

j
oT
os

� �
T ðn; g; 1; sÞ þ 1

k
gðn; g; 1; sÞ

� �

� Gðx; y; z; t; n; g; f; sÞdfdsdgdn ¼ 0 ð12Þ

Next, the integral in Eq. (12) is integrated by parts: the
terms which include derivatives of the function T with re-
spect to n, g, f, are integrated by parts twice and the term
including the derivative with respect to s is integrated once.
After utilizing the initial and boundary conditions (4)–(7)
and (9),(10), the following equation is obtained:Z a

0

Z b

0

Z h

0

Z t

0

r2
3 þ

1

j
oT
os

� �
Gðx; y; z; t; n; g; f; sÞ

� ��

� T ðn; g; 1; sÞ þ 1

k
gðn; g; f; sÞGðx; y; z; t; n; g; f; sÞ

�

� dsdfdgdnþ B:c: ¼ 0 ð13Þ

where

B:c: ¼
Z a

0

Z b

0

Z t

0

½l1T 1Gjn¼h þ l0T 0Gjn¼0�dsdgdn

Finally, using (11) in Eq. (13) and using the properties of
the Dirac delta function, one obtains:

T ðx; y; z; tÞ

¼ 1

k

Z a

0

Z b

0

Z h

0

Z t

0

gðn; g; f; sÞGðx; y; z; t; n; g; f; sÞ

� dsdfdgdnþ B:c: ð14Þ

Substituting the function gðn; g; f; sÞ given by (2) into Eq.
(14), the temperature of the plate, T ðx; y; z; tÞ, is expressed
as

T ðx; y; z; tÞ ¼ H
4e2k

Z t

0

Z �xðsÞþe

�xðsÞ�e

Z �yðsÞ�e

�yðsÞ�e
Gðx; y; z; t; n; g; h; sÞdgdnds

þ B:c: ð15Þ

The Green’s function Gðx; y; z; t; n; g; f; sÞ given by (A.1) is
now utilized in Eq. (15). After evaluation of the integrals
with respect to g, n, one obtains the temperature
T ðx; y; z; tÞ in the form

T ðx; y; z; tÞ ¼ 4jH
p2e2k

X1
j¼1

X1
m¼1

X1
n¼1

wnðzÞwnðhÞ
jmQn

KjmnðtÞ

� sin
jxp
a

sin
myp

b
sin

jpe
a

sin
mpe

b
þ B:c: ð16Þ

where wnðzÞ;Qn are defined in Appendix A; and

KjmnðtÞ ¼
Z t

0

sin
jp�xðsÞ

a
sin

mp�yðsÞ
b

expð�jc2
jmnðt � sÞÞds

ð17Þ
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with c2
jmn ¼ b2

n þ
jp
a

� 	2 þ mp
b

� 	2
, bn are roots of equation

(A.11).
The integral in Eq. (17), after taking into account the

functions �xðsÞ and �yðsÞ which are given in Eq. (3), can be
0
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KjmnðtÞ ¼ sin
jpx0

a
sin

mpy0

b

Z t

0

cosðlj cos usÞ cosðmm sin usÞ

� expð�jc2
jmnðt � sÞÞds

þ sin
jpx0

a
cos

mpy0

b

Z t

0

cosðlj cos usÞ sinðmm sin usÞ

� expð�jc2
jmnðt � sÞÞds

þ cos
jpx0

a
sin

mpy0

b

Z t

0

sinðlj cos usÞ cosðmm sin usÞ
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Fig. 4. Temperature distribution T ðx; y; z; tÞ on the square plate surface for z ¼
plot, (b) isothermal lines; a ¼ 1:0 m, b ¼ 1:0 m, h ¼ 0:01 m, A ¼ B ¼ 0:25 m.
� expð�jc2
jmnðt � stÞÞds

þ cos
jpx0

a
cos

mpy0

b

Z t

0

sinðlj cos usÞ sinðmm sin usÞ

� expð�jc2
jmnðt � sÞÞds ð18Þ

where lj ¼ jpA
a and mm ¼ mpB

b . The integrals occurring in Eq.
(18) were evaluated and the results are presented in Appen-
dix B.
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4. Numerical examples

The solution to the considered three-dimensional heat
conduction problem is used in the numerical investigation
of the temperature distribution in a rectangular steel plate
which is heated by a moving heat source. For each calcula-
tion, dimensional and physical properties of the plate and
the heat source are: k = 51.4 W m�1 K�1, j = 1.29 �
10�5 m2 s�1, u = 0.2 p rad s�1, a0 = a1 = 100 W m�1 K�1,
x0 ¼ a=2, y0 ¼ b=2 and H = 105 W m�2. The temperature
of the surrounding medium is assumed as T 0 ¼
T 1 ¼ 100 �C. The calculations were performed with use
the Mathematica software.

In the first example, it was assumed that the heat source
moves harmonically along a section parallel to one edge of
the plate (it was assumed B = 0 in Eq. (3)). In this case, the
calculations were performed for a plate with: a ¼ 0:5 m,
b ¼ 0:4 m, h ¼ 0:02 m and A ¼ 0:2 m. The temperature dis-
tribution on the plate surface z ¼ h, for time t = 3600–
3610 s, is shown in Fig. 2. The time interval between obser-
vations of the temperature of the plate is set at 10 s because
this is the time the heat source takes to execute a complete
cycle of movement. A relative long time overall observation
time (3600–3610 s) was selected in order that the process
can be treated practically as in a steady state during this
time. The location of the heat source is clearly visible in
the figure and is shown by the temperature peak. The tem-
perature is lower in front of heat source than behind the
location of the heat source.

The temperature distribution on the plate surface when
the heat source moves along an elliptical trajectory is illus-
trated in Fig. 3. The geometrical dimensions of the consid-
ered plate are: a ¼ 1:0 m, b ¼ 0:5 m, h ¼ 0:01 m. The
elliptical trajectory of the movement of the heat source is
characterized by Eq. (3) with A ¼ 0:3 m and B ¼ 0:2 m.
The temperature distribution on the plate surface is pre-
sented for t = 3600 s, when the heat source is located at
the vertex of the ellipse. The temperature increases dramat-
ically around the point of the plate at the moment of heat
source transition, and the temperature changes over a low
range only in the area of the middle of the ellipse.

In the third example, the temperature distribution on a
square plate heated by a source which moves along a circu-
lar trajectory was determined. The centre of the circle coin-
cides with the middle of the square. The following data
were assumed for the calculations: a ¼ 1:0 m, b ¼ 1:0 m,
h ¼ 0:01 m, A ¼ B ¼ 0:25 m. The temperature distribution
on the plate surface z ¼ h, for t = 3600 s as a function of
two variables x, y, is presented in Fig. 4(a), and the isother-
mal lines are shown in Fig. 4(b). Isotherms behind the heat
source are much thicker than in the front and the position
of the moving heat source can be clearly seen (Fig. 4(b)).

5. Conclusions

In this paper, an analytical model to describe the three-
dimensional temperature field for a finite plate with a heat
source which moves over its surface was established. The
moving heat source causes cyclic heating of various plate
areas. The temperature distribution in the considered plate
in an analytical form was obtained using the time-depen-
dent Green’s function. The advantage of this approach is
that a solution without any additional simplification can
be obtained. Numerical calculation of the temperature dis-
tribution were performed using the analytical form of the
solution. The changes in temperature on the plate surface
are shown for a steel plate subjected to the activity of a
moving heat source. The results are presented for the heat
source moving along a section parallel to one edge of the
plate, moving along an elliptical trajectory, and moving
in a circular trajectory. The temperature is highest at the
point of heat source location, but the temperature
decreases behind the source. In the data assumed for the
numerical calculations, in particular for the assumed veloc-
ity of the heat source, the temperature field of the plate
area changes insignificantly over time apart from in a lim-
ited area around the heat source. Moreover, the tempera-
ture is considerably lower in the area around the centre
of the circular or elliptical trajectory than near the
trajectory.

Appendix A

The Green’s function Gðx; y; z; t; n; g; 1; sÞ of the three-
dimensional heat conduction problem ((10) and (11)) can
be expressed in a form of the product [6]

Gðx; y; z; t; n; g; 1; sÞ

¼ 4j
ab

Hðt � sÞGX ðx; n; t � sÞGY ðy; g; t � sÞGZðz; f; t � sÞ

ðA:1Þ

where Hðt � sÞ is the Heaviside function, GX ðx; n; t � sÞ,
GY ðy; g; t � sÞ and GZðz; f; s� tÞ are Green’s functions of
one-dimensional problems: in x-direction, y-direction and
z-direction. The formulations of the considered one-dimen-
sional initial- boundary problems are as follows:

x-direction:

o2

ox2
� 1

j
o

ot

� �
GX ðx; n; t � sÞ ¼ �dðx� nÞdðt � sÞ ðA:2Þ

GX jt¼0 ¼ 0;GX jx¼0 ¼ GX jx¼a ¼ 0 ðA:3Þ

y-direction:

o2

oy2
� 1

j
o

ot

� �
GY ðy; g; t � sÞ ¼ �dðy � gÞdðt � sÞ ðA:4Þ

GY jt¼0 ¼ 0;GY jy¼0 ¼ GY jy¼b ¼ 0 ðA:5Þ

z-direction:

o2

oz2
� 1

j
o

ot

� �
GZðz; f; t � sÞ ¼ �dðz� fÞdðt � sÞ ðA:6Þ

GZ jt¼0 ¼ 0; ðkoGZ=oz� a0GZÞjz¼0 ¼ 0; ðkoGZ=ozþ a1GZÞjz¼h ¼ 0;

ðA:7Þ
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The Green’s functions GX ðx; n; t � sÞ, GY ðy; g; t � sÞ and
GZðz; f; s� tÞ, are given by Beck et al. in Ref. [4]. The func-
tions can be written in the form

GX ðx; n; t � sÞ ¼ 2

a

X1
j¼1

expð�j
jp
a

� �2

ðt � sÞÞ sin
jpx
a

sin
jpn
a

ðA:8Þ

GY ðy; g; t � sÞ ¼ 2

b

X1
m¼1

exp �j
mp
b


 �2

ðt � sÞ
� �

sin
jpy
b

sin
jpg
b

ðA:9Þ

GZðz; f; t � sÞ ¼ 2

h

X1
n¼1

1

Qn

expð�jb2
nðt � sÞÞwnðzÞwnðfÞ

ðA:10Þ
where wnðzÞ ¼ bn cos bnzþ l0 sin bnz, Qn ¼ ðb2

n þ l2
0Þ�

1þ b2
nþl0l1

hb2
nðl0þl1Þ

sin2 bnh

 �

, for n = 1,2, . . . , and bn are roots

of the equation:

bnðl0 þ l1Þ cos bnh� ðb2
n � l0l1Þ sin bnh ¼ 0: ðA:11Þ
Appendix B

An analytic form of the integrals in equation (18) can be
obtained by using the following relationships [10]:

cosðr sin uÞ ¼ 2
X1
i¼0

viJ 2iðrÞ cos 2iu ðB:1Þ

sinðr sin uÞ ¼ 2
X1
i¼0

J 2iþ1ðrÞ sinð2iþ 1Þu ðB:2Þ

and the relationships which can be obtain from (B.1, B.2):

cosðr cos uÞ ¼ 2
X1
i¼0

ð�1ÞiviJ 2iðrÞ cos 2iu ðB:3Þ

sinðr cos uÞ ¼ 2
X1
i¼0

ð�1ÞiJ 2iþ1ðrÞ cosðð2iþ 1ÞuÞ ðB:4Þ

where J mðrÞ are Bessel functions and v0 ¼ 0:5, vi ¼ 1 for
i ¼ 1; 2; . . . . From Eqs. (B.1)–(B.4) one obtains
cosðlj cos utÞ cosðmm sin utÞ

¼ 4
X1
i¼0

X1
k¼0

ð�1ÞivivkJ 2iðljÞJ 2kðmmÞ cos 2iut cos 2kut

ðB:5Þ
cosðlj cos utÞ sinðmm sin utÞ

¼ 4
X1
i¼0

X1
k¼0

ð�1ÞiviJ 2iðljÞJ 2kþ1ðmmÞ cos 2iut sinð2k þ 1Þut

ðB:6Þ
sinðlj cos utÞ cosðmm sin utÞ

¼ 4
X1
i¼0

X1
k¼0

ð�1ÞivkJ 2iþ1ðljÞJ 2kðmmÞ cosð2iþ 1Þut cos 2kut

ðB:7Þ
sinðlj cos utÞ sinðmm sin utÞ

¼ 4
X1
i¼0

X1
k¼0

ð�1ÞiJ 2iþ1ðljÞJ 2kþ1ðmmÞ cosð2iþ 1Þut sinð2k þ 1Þut

ðB:8Þ
Hence the function KjmnðtÞ in Eq. (18) may be then written
as

KjmnðtÞ ¼ 4
X1
i¼0

X1
k¼0

ð�1Þi sin
jpx0

a
sin

mpy0

b
vivkJ 2iðljÞJ 2kðmmÞI ð1Þjmnðt; 2i; 2kÞ

�

þ sin
jpx0

a
cos

mpy0

b
viJ 2iðljÞJ 2kþ1ðmmÞI ð2Þjmnðt; 2i; 2k þ 1Þ

þ cos
jpx0

a
sin

mpy0

b
vkJ 2iþ1ðljÞJ 2kðmmÞI ð1Þjmnðt; 2iþ 1; 2kÞ

þ cos
jpx0

a
cos

mpy0

b
J 2iþ1ðljÞJ 2kþ1ðmmÞI ð2Þjmnðt; 2iþ 1; 2k þ 1Þ

�

ðB:9Þ

where

I ð1Þjmnðt; r; sÞ ¼
Z t

0

cosðrusÞ cosðsusÞ expð�jc2
jmnðt � sÞÞds

ðB:10Þ

I ð2Þjmnðt; r; sÞ ¼
Z t

0

cosðrusÞ sinðsusÞ expð�jc2
jmnðt � sÞÞds

ðB:11Þ

After evaluation the integrals (B.10), (B.11) are:

I ð1Þjmnðt; r; sÞ ¼ 1

Cjmnðr � sÞCjmnðr�sÞ
expð�tc2

jmnjÞc2
jmnjðc4

jmnj
2 þ ðr2 þ s2Þu2Þ

þ 1

2Cjmnðr � sÞ ½c
2
jmnj cos½ðr � sÞtu� þ ðr � sÞu sin½ðr � sÞtu�

þ 1

2Cjmnðr þ sÞ ½c
2
jmnj cos½ðr þ sÞtu� þ ðr þ sÞu sin½ðr þ sÞtu�

ðB:12Þ

I ð2Þjmnðt; r; sÞ ¼ 1

Cjmnðr � sÞCjmnðr þ sÞ expð�tc2
jmnjÞsuðc4

jmnj
2 þ ð�r2 þ s2Þu2Þ

þ 1

2Cjmnðr � sÞ ½ðr � sÞu cos½ðr � sÞtu� � c2
jmnj sin½ðr � sÞtu�

þ 1

2Cjmnðr þ sÞ ½�ðr þ sÞu cos½ðr þ sÞtu� þ c2
jmnj sin½ðr þ sÞtu�

ðB:13Þ

with CjmnðuÞ ¼ c4
jmnj

2 þ u2u2.
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